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Abstract. OWL 2 EL, which is underpinned by the description logic
EL, has been used to build terminological ontologies in real applications,
like biomedicine, multimedia and transportation. On the other hand,
there have been techniques that allow developers and users acquiring
large scale ontologies by automatically extracting data from different
sources or integrating different domain ontologies. Thus the issue of han-
dling large scale ontologies has to be tackled. In this short paper, we
report our work on classification of OWL 2 EL ontologies using MapRe-
duce, which is a distributed computing model for data processing. We
discuss the main problems when we use MapReduce to handle OWL 2
EL classification and how we address these problems. We implement the
algorithm using Hadoop, and evaluate it on a cluster of machines. The
experimental results show that our prototype system achieves a linear
scalability on large scale ontologies.
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1 Introduction

Among different profiles of OWL 21, OWL 2 EL (EL for short), which is based
on description logics EL family, stands out for its positive complexity results and
sufficient expressivity. EL is mainly used in biomedicine. One of the most popular
biomedicine ontology expressed in EL, SNOMED CT [5], is supposed to be a
large scale ontology, i.e., nearly six hundred thousand axioms (or statements)
are involved. Thus, to make EL play a better role in real applications, it is
necessary to give efficient solutions for handling large scale ontologies. One of
the most important reasoning services in EL, called classification [2], is the task
of computing a subsumption hierarchy between concept descriptions.

In order to handle large ontologies efficiently, several works employ parallel
or distributed computing techniques. ELK [3] is the first reasoner that exploits
multi-core techniques to enhance the efficiency of classification in EL. Although

1 www.w3.org/TR/owl2-overview/



the experimental results show that these in-memory reasoners can be scalable to
some extent, they are restricted to the main memories of the utilized machines.
On the other hand, a distributed approach based on Redis is also proposed in
[4] for EL classification. This work also verifies that distributed techniques can
handle classification on large scale EL ontologies.

In this paper, we report our work on classification of EL ontologies using
MapReduce, which is conducted parallelly with the work [4]. We briefly discuss
the main problems when we use MapReduce to handle OWL 2 EL classification
and how we address these problems. We implement a prototype system and
evaluate it on a Hadoop cluster. The experimental results show that our system
has a linear scalability on large real ontologies. The details of this work can be
found in our technical report which is available at this address2.

2 The Problems of Performing EL Classification on
MapReduce and Our Solutions

Due to the page limit, we refer the readers to our technical report for the formal-
ism of EL and the work mechanism of MapReduce. In this part, we briefly discuss
the main problems when we use MapReduce to handle OWL 2 EL classification
and how we address these problems.

• Translating ontologies and rules to MapReduce languages. Since
MapReduce programs can only handle key/value pairs. We should first translate
EL axioms to key/value pairs. However this is not a trivial task when considering
the issue of performance. We consider representing EL axioms using relational
tables. For example, for axioms of the form A ⊑ ∃r.B, we introduce a relational
table of the form R(A, r,B) where R is the name of this table, (A, r,B) is
the table schema. In this way, applying classification rules can be transformed
to joins of relational tables. Finally, it is relatively easy to map operations of
relational tables to MapReduce programs.

• Reducing the number of jobs. If we use MapReduce programs to per-
form EL classification, several jobs are needed to apply different rules until a
fix-point is reached. This delays computation due to the inherent overheads of
platforms. Thus reducing the number of jobs can significantly improve running
performance. We apply some optimizations to reach this goal. For example, we
carefully decide rule application order. We also combine some MapReduce jobs
into one.

•Handling multi-way joins. It is easy for MapReduce to handle a two-way
join using one job. For a multi-way join, we can partition it into several two-way
joins to adapt to MapReduce programs. In the case of EL classification, there
are three rules which have multiple joints in their preconditions. However, it is
challenging to partition it into several two-way joins and, the performance of the
whole computation can also be guaranteed. We analyze and compare different
partition methods. The details can be found in our technical report.
2 https://drive.google.com/drive/folders/0ByjKIQyCPHldSDNrWnlZN3pRdTg



3 Evaluation

We implement a prototype system based on Hadoop3, which is an open-source
Java implementation of MaReduce. We conduct all the experiments in a cluster
that consists of 14 nodes, and each node has a 16 Gigabyte RAM and two quad-
core processors. We use two famous medical ontologies: Galen and SNOMED
CT. In order to validate the scalability of our system, we evaluate it on different
copies of Galen and SNOMED CT. The Galen copies are renamed by n-Galen,
where n is the number of copies in n-Galen. SNOMED CT is processed similarly.

Table 1: The results of scalability tests
datasets #input axioms(k) #derived axioms(k) time(min) ♯jobs
1-Galen 91 6,941 143.4 93
2-Galen 182 13,808 179.8 98
4-Galen 364 27,626 242.7 94
8-Galen 728 55,209 319.5 94

1-SCTa 1,151 18,980 479.5 94
2-SCT 2,302 38,795 976.8 93
3-SCT 3,453 60,715 1589.5 94
a abbr. of SNOMED CT.
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Fig. 1. Classification time on different copies and different units.

Scalability tests. We assign 52 units (a unit represents a logic core) of the
cluster to perform classification on different ontology copies. The experimental
results are collected in Table 1. We use Figure 1 to give a graphical representation
of the relevant contents with respect to Galen in Table 1, where the curve in the
left part (resp. right part) shows the relation between the classification time and
the number of copies (resp. the inverse of the number of units we set to perform
classification on 1-Galen). From Figure 1, we can see that the classification time is

3 http://hadoop.apache.org/



approximately linear in the number of copies, and inversely linear in the number
of units. The experiments on SNOMED CT have the similar results.

From Table 1, we can estimate the maximum speedup of the evaluated on-
tology based on the the view of Amdahl’s Law4 that indicates the speedup of a
computation task only depends on the fraction of sequential computation part
with the assumption of infinite processors being allocated (IPA). According to
the Amdahl’s Law, with IPA, the run-time of each job is O(1) in theory, while
the whole run-time depends on the number of jobs5. This helps estimate the
maximum speedup to be O(T1/n), where T1 is the run-time units of classifica-
tion on one processor and n is the number of jobs (or the run-time units) on
infinite processors. For example, the number of jobs for classifying 1-SNOMED
(d(O1−SNOMED)) is 94 and more than 18 million axioms are derived (see Table
1). Thus the maximum speedup of classification on 1-SNOMED can be estimated

to be max−speedup(O1−SNOMED) ≥ |CO|
d(O1−SNOMED) (= 191, 489). Similarly, the

maximal speedup for classifying 1-Galen is greater than 70,000. It indicates that
classifying these two ontologies has a high degree of parallelism. That is to say if
we set more computing units to our system, it should have a higher performance.

4 Conclusions

In this paper, we reported our work on classification of EL using MapReduce.
We discussed the main problems and gave our solutions. We implemented a pro-
totype system using Hadoop. The experimental results showed that our system
has a linear scalability on real medical ontologies and their copies.
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